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LETTER TO THE EDITOR 

Localisation-delocalisation transition in a solid-on-solid 
model with a pinning potential 

Theodore W Burkhardt 
Institut Laue-Langevin, 156 X, F-38042 Grenoble Cedex, France 

Received 28 November 1980 

Abstract. The influence of pinning forces on domain-wall fluctuations is studied in a 
continuous planar solid-on-solid model with a one-dimensional interface. The system is 
simple enough so that exact results can be obtained for a variety of pinning forces. The 
pinning of the interface is formally equivalent to the binding of a quantum mechanical 
particle in a temperature-dependent effective potential. In the case of a short-range pinning 
force applied a finite distance from the edge of the system, there is a localisation- 
delocalisation transition at a finite temperature. The transition is qualitatively similar to 
that studied in the d = 2 Ising model by Abraham. 

Recently Abraham (1980) reported some results for a two-dimensional Ising model in 
which a transition associated with a domain wall occurs at a temperature below the bulk 
critical temperature. Along one edge of the system there is a ladder of weaker bonds 
where it is energetically favourable for a domain wall to pass. Below the transition 
temperature the domain wall is bound by the ladder. Its mean distance (x) from the 
edge of the system is finite, and it is smooth, i.e. ( ( x - ( x ) ) * )  is finite. Above the 
transition temperature but below the bulk critical temperature the domain wall is no 
longer bound and is rough. Both (x) and ((x - (x))*) are infinite. On approaching the 
critical temperature T D  of the domain-wall transition from below, (x) diverges as 
( TD - T)-’. At T D  the specific heat of the domain wall is discontinuous. 

Abraham’s model differs from conventional models for the roughening transition 
(see, for example, Leamy eta1 (1975), van Beijeren (1977)) in an obvious but important 
respect. The ladder of special bonds breaks the translational symmetry and in binding 
the domain wall also reduces its width. In the translationally invariant case the domain 
wall of the d = 2 Ising model is always rough except at zero temperature. 

In this Letter a simple soluble model is discussed which exhibits a localisation- 
delocalisation transition with all of the qualitative characteristics of Abraham’s model 
mentioned above. The model, which is indicated schematically in figure 1, is a 
solid-on-solid ( S O S )  model (Temperley 1952, Leamy et a1 1975) with a pinning 
potential which favours a flat bound interface energetically. The Hamiltonian is given 
bv 

(1) 

where xi denotes the perpendicular distance of the interface from point i on the lower 
horizontal edge. The xi vary continuously in the interval 0 < x i  <CO. The case of an 
integer spectrum for the xi (Hilhorst and van Leeuwen 1980, Chui and Weeks 1980, 
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Figure 1. The solid-on-solid model. 

Kroll 1980) can also be treated exactly, but will not be discussed here, as the phase 
transition is qualitatively the same. The energy contribution from the first sum in (1) is 
proportional to the extra length of an interface which is not flat and horizontal. The 
second sum is the pinning potential which localises the interface below the transition 
temperature. The case of a square-well potential is considered explicitly below. 

Since the SOS model is a special case of the Ising model in the limit of infinite 
anisotropy (Temperley 1952, Leamy et a1 1975), results for the discrete SOS model with 
a particular pinning potential are contained in Abraham’s work. Dealing directly with 
the SOS rather than the Ising model permits one to obtain exact results for a large variety 
of pinning potentials, since the transfer matrix is that of a one-dimensional instead of a 
two-dimensional system, which simplifies the mathematics enormously. A useful 
equivalence between the pinning of the interface and the binding of a quantum 
mechanical particle in a potential well related to the pinning potential emerges from the 
analysis of the transfer matrix corresponding to (1). The equivalence allows one to 
make qualitative statements about the nature of the transition for different types of 
pinning potentials. In particular, one sees that the interface generally remains smooth 
and localised at all finite temperatures if the pinning force is applied at an infinite rather 
than a finite distance from the edge of the system. 

The transfer matrix (Kramers and Wannier 1941, Huang 1963) corresponding to (1) 
is given by 

(XITlY)=exP(-V(x)/2-Klx -YI- V ( Y ) / 2 )  (2) 

where K = J / k B T  and V(x) = U(x)/k,T. Its eigenfunctions 4 ( x )  satisfy the integral 
equation 

In the thermodynamic limit the free energy of the system is proportional to the 
logarithm of the largest eigenvalue A for which (3) has a well behaved solution. 

With the substitution $(x) = eV‘x”24(x), equation (2) takes the form 
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Using (-d2/dx2 + K 2 )  e--K'x-y' - - 2KS(x - y )  in (4), one finds that $(x) satisfies the 
Schrodinger equation 

with the boundary condition 

$'(O)/$(O) = K (6) 

which is implied by (4). From the transfer-matrix formalism it follows that the 
probability density P (x )  for finding the interface at a distance x from the edge of the 
system is given by 

~ ( x )  oc e- v ( x ) l  4 (x) 1' (7) 
where +(x) is the eigenfunction of ( 5 )  and (6) corresponding to the largest value of A .  
One sees from (7) that the interface probability density is more concentrated in regions 
of lower potential energy than the quantum mechanical probability density I $ ( X ) / ~ .  

From eiementary quantum mechanics (Schiff 1968) one knows that (5) and (6) have 
scattering solutions with the asymptotic form $(x) = A  sin(qx + S), x + 00 and eigen- 
value A (4) = 2K/(K2 + q 2 )  for potential wells U(x)  which tend to zero rapidly enough in 
the limit of large x. If the potential well is sufficiently attractive, there may be one or 
more bound states. The bound states have the asymptotic form $(x) = B e-", x +CO,  

with eigenvalues A, = 2K/(K2 - p 2 ) .  From the expressions for A (9) and A, it is clear that 
the largest A for which ( 5 )  and (6) can be solved corresponds to the bound state with the 
largest value of p (the most tightly bound) or, in the absence of bound states, the q = 0 
scattering state. From (7) one sees that these two types of states correspond to bound 
and unbound interfaces, respectively. The system exhibits a localisation-delocalisation 
transition at temperatures where the eigenvalues corresponding to the two types of 
states become degenerate. 

We now consider the square well potential U(x)  = -Uo for O < x  < R, U(x) = 0 
otherwise, which corresponds to a short-range pinning force applied near the edge of 
the system. The function $(x) corresponding to the most tightly bound state is shown in 
figure 2(a).  For O <  x < R, $(x) = A  sin kx + B cos kx and for x > R, $(x) = C e-,'. 

( U )  (bl  

Figure 2. ( a )  Bound-state solution $ ( x )  for a square-well pinning potential at the edge of 
the system. The boundary condition is $ ' ( O ) / $ ( O )  = K. ( b )  Bound-state solution $ ( x )  for a 
square-well pinning potential infinitely far from the edge of the system. The boundary 
condition is $ ' ( O )  = 0. 
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The eigenvalue A is determined by 

k - (2K/A ) e vo + K = 0,  

-p2  - 2K/A + K 2  = 0 ,  (9) 
sin kR - ( p /  k )  cos kR 
cos kR + ( p / k )  sin kR' 

K = k  

where Vo = Uo/kBT. Equations (8)-(10) follow from ( 5 )  and ( 6 )  and the continuity of 
$(x) and $'(x) at x = R.  The bound state and the q = 0 scattering state become 
degenerate when p = 0. Combining this condition with equations (8)-(10), one finds 
the critical line 

(11) KR = (e""- tan-'(evO- 

which is plotted in terms of the variables t = kBTD/JR and U = Uo/JR in figure 3. 
U 2: .rr2t3/4 for t << 1 and U = t In t for t >> 1. 

U, IJR 

Figure 3. Critical line of localisation-delocalisation transitions for a square-well pinning 
potential at the edge of the system. 

Equations (8)-(10) imply that p vanishes as TD-T on approaching the delo- 
calisation temperature TD from below at constant J and V ( x ) .  Since the gap between 
the eigenvalues A, = 2K/(K2-p2)  and A(0) = 2/K of the bound state and the q = 0 
scattering state varies as p 2 ~ ( T D -  T ) 2 ,  the specific heat is discontinuous at the 
transition. From (7)  one sees that the mean distance (x) of the interface from the wall 
and the root-mean-square width [((x -(x)) )] diverge as (TD- T)-'. Qualitatively 
similar behaviour is found in Abraham's model. The height-height correlation function 
((x, - x ~ ) ~ )  of the S O S  model may also be readily calculated. It approaches its n + 00 limit 
2 ( ( x  - ( x ) ) ~ )  with an exponential tail of the form exp(-constant x n(TD-  T ) 2 )  for 
T G TD. For T > TD, ((x, - x o ) 2 ) a  n, n + 00, as in the translationally invariant S O S  
model without a pinning potential. 

Let us now consider the case in which the square well is infinitely far from the edge 
of the system. It is convenient to measure the coordinate x from the midpoint of the 

2 1/2 
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well, i.e. U ( x )  = -Uo for -R/2  < x < R / 2 ,  and U(x)  = 0 for R / 2  < x < 03 or -03 < x < 
-R/2 .  Equation ( 5 )  still applies, but not the boundary condition (6). The most tightly 
bound state is the even-parity solution with no nodes sketched in figure 2 ( b ) .  Inside the 
well @(x)  = A cos kx, and outside @(x) = B e-”’’. The eigenvalue A is determined by 
(8), (9) and the continuity condition 

k tan(kR/2) = p .  ( 1 2 )  

The properties of this set of equations are well known from elementary quantum 
mechanics (Schiff 1968). There is a bound state for every Vo > 0. Thus an arbitrarily 
weak square-well potential localises the interface at all finite temperatures. 

The system described by (8), (9) and ( 1 2 )  does, of course, exhibit a localisation- 
delocalisation transformation as U. + 0 at constant J,  R and T. In this limit p vanishes 
as U,,. The gap between the eigenvalues of the bound state and the even-parity q = 0 
state varies as U:. It follows from (7) that the root-mean-square width [((x - (x)) )] 
of the interface diverges as U;’.  

Obviously the qualitative characteristics of the transition described above do not 
depend on the details of the pinning potential. For a large class of potentials with 
asymptotic bound and scattering states one expects similar behaviour. In the case of a 
potential well at a finite distance from the edge of the system, equation (6) requires that 
@ ( x )  have a positive slope at the edge, as shown in figure 2(a) .  Unless the well exceeds a 
certain critical depth, the wavefunction does not turn over in the well, and there is no 
bound state. Since V ( x )  varies as T-’ it is clear that the critical depth corresponds to a 
finite temperature, in general. In the case of a well infinitely far from the edge of the 
system, the appropriate solution $ ( x )  has slope zero at some point in the well. Even an 
infinitesimally attractive potential turns $ ( x )  downward to produce a bound state. 

Thus far, only short-range pinning forces have been considered. These forces 
vanish rapidly enough as x +CO so that U ( x )  approaches a constant, implying that ( 5 )  
has scattering and perhaps bound-state solutions. For long-range forces corresponding 
to potentials with the behaviour U(x)  + 03, x + 03 (for example, potentials such as 
U ( x )  = cxs, c > 0, s >O), the solutions of ( 5 )  are seen to have the asymptotic form 
@ ( x )  ==A e-Kx, x +CO. Thus for these forces ( 5 )  only has bound-state solutions, i.e. the 
interface remains pinned for all finite temperatures. The long-range force U ( x )  =Fox 
is of special interest, since it corresponds to a constant (gravitational) force. Hilhorst 
and van Leeuwen (1980) have considered several long-range pinning forces in the 
discrete SOS model in more detail. 

That a short-range pinning force is less effective in localising the interface the closer 
it is applied to the edge of the system is intuitively clear. In the case of a pinningforce far 
from the edge, the interface can make large excursions to both sides of the well. The 
number of interface configurations which profit from the lower energy in the well 
decreases as the well is moved closer to the edge. The interface is repelled at the edge 
since a point on the interface is pulled away from the edge by neighbouring points. The 
pinning force must overcome this repulsion in order to bind the interface. Equations (6) 
and (7) make a quantitative statement about the repulsion. They imply 

2 1 / 2  

P’(O)/P(O) = (F(0)  +2J) /keT ( 1 3 )  

where F ( x )  = -dU(x)/dx is the pinning force. In the absence of a pinning force at the 
edge or for weak pinning forces F(0)  + 2J > 0, P’(0) is positive, i.e. the probability 
density decreases on approaching the edge. 
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The class of models with one-dimensional interfaces which exhibit localisation- 
delocalisation transitions which are qualitatively similar to Abraham’s king transition is 
presumably quite large. So far the class is known to include the continuous and discrete 
SOS models and a model with Gaussian interactions investigated by Lajzerowicz and 
Vallade (1980). In closing, we note that some but not all of the quantitative charac- 
teristics discussed above are found in a simple mean-field theory in which one calculates 
the mean position (x) of a point on the interface self-consistently with the distribution 

which neglects fluctuations in the positions of the two neighbouring points of the 
interface. The mean-field theory predicts a smooth localised interface at all finite 
temperatures for long-range pinning forces and for short-range forces applied infinitely 
far from the edge. In the case of a short-range pinning force near the edge (a 
square-well potential was considered explicitly), (x) is found to diverge as (TD - T)-l on 
approaching a finite temperature TD from below, as in the exact solutions of the models 
mentioned above. However, the mean-square width ((x - ( x ) ) ~ )  calculated with (14) 
remains finite for T > TD. Thus the mean-field theory predicts the delocalisation 
transition but not the roughening transition. 

I thank Claude Comte, J M J van Leeuwen and Vitor Rocha Vieira for valuable 
discussions. S T Chui and J D Weeks, H Hilhorst and J M J van Leeuwen, D M 
Kroll and J Lajzerowicz and M Vallade have informed me of related work they have 
carried out independently. 

Note added in proof. In an improved mean-field theoz,  which perhaps is qualitatively correct in high 
dimensions, (14) is replaced by P(x)ccexp(-V(x) -2K so dylx - y lP(y) )  and solved selfconsistently. In the 
case of a square-well pinning potential at the edge of the system, one finds a localisation-delocalisation 
transition in which the interface remains smooth. The mean distance of the interface from the edge diverges 
as -ln(TD- T ) ,  and there is a discontinuity in the specific heat at the transition. 
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